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Abstract-A numerical study is made of double-diffusive natural convection in a rectangular fluid-saturated 
vertical porous enclosure. The flows are driven by conditions of uniform heat and mass fluxes imposed 
along the two vertical side walls of the cavity where the two buoyancy effects can either augment or 
counteract each other. An extensive series of numerical simulations is conducted in the range 1 < RT < 165, 
1 < Le =G IO’, - 20 < N < 20 and A = 1, where RT, Le, N and A are the Darcy-modified Rayleigh number, 
Lewis number, buoyancy ratio and aspect ratio of the enclosure, respectively. For aiding flows (N > 0) the 
behaviour Iof the resulting double-diffusive convection is in qualitative agreement with the available 
numerical results. For opposing flows (N < 0) the existence of multiple steady states is demonstrated. It is 
determined that, for a given value of N, both Lewis and Rayleigh numbers have an influence on the domain 
of existence of these multiple steady states. Comprehensive Nusselt and Sherwood number data are 
presented a;s functions of the governing parameters mentioned above. The effects of the buoyancy ratio are 
found to be rather significant on the flow pattern and heat and mass transfer, especially for the opposing 

flows. 

INTRODUCTION 

Recent interest in the study of flows with two sources 
of buoyancy through porous media has been mainly 
motivated by its importance in many natural and 
industrial problems. Prominent among these are the 
migration of moisture through air contained in fibrous 
insulation, grain storage, food processing and storage 
and contaminant transport in ground water. Double- 
diffusive flows through porous media are also of inter- 
est in geophysical systems, electrochemistry and met- 
allurgy. 

Early studies on double-diffusion in porous media 
primarily focused on the problem of convective insta- 
bility in a horizontal layer. To this end Nield [l], 
Taunton et al. [2] and Rubin [3] relied on linear stab- 
ility analysis to investigate the onset of thermohaline 
convection in a horizontal porous layer using the 
Darcy flow model. Poulikakos [4] studied the same 
problem on the basis of the Brinkman-extended Darcy 
model for sparsely packed porous bed. The effect of 
anisotropic thermo-convective currents on thermo- 
diffusive equilibrium in a horizontal porous layer 
was investigated by Malashetty [5] using linear stab- 
ility analysis. Trevisan and Bejan [6] studied heat and 
mass transfer affected by high Rayleigh number con- 
cerning BBnard convection in a two-dimensional satu- 
rated porous layer heated from below where the buoy- 
ancy effect was due entirely to temperature gradients. 
Thermohaline convection in a porous medium heated 

t Author to whom correspondence should be addressed. 

and salted from below was investigated by Rosenberg 
and Spera [7] for a variety of boundary and initial 
conditions on the salinity field. Chen and Chen [8] 
used the Forchheimer-Brinkman extended Darcy 
model to account for viscous and inertia effects on 
double-diffusive fingering in a porous layer. 

Relative to the research activity on natural con- 
vection in vertical porous enclosures driven by a single 
buoyancy effect, the work on convection driven by 
two buoyancy effects is quite limited. Bejan and his 
co-workers [9-l l] considered natural convection heat 
and mass transfer in a rectangular cavity subjected to 
various boundary conditions. Using both analytical 
and numerical techniques natural convection within a 
porous layer subjected to heat and mass fluxes in the 
horizontal direction was studied for a wide range of 
input parameter values. A numerical study was con- 
ducted by Lin [12] to analyze t.he transient natural 
convection heat and mass transfer in a square enclos- 
ure. Influences of the governing parameters on the 
unsteady variations of Nusselt and Sherwood num- 
bers were examined and discussed in detail. Mehta 
and Nandakumar [ 131 investigated the effect of non- 
homogeneity of the porous medium on natural con- 
vection heat and mass transfer in a saturated porous 
enclosure subjected to uniform fluxes of heat and 
mass. The resulting Nusselt and Sherwood numbers 
are found to be quite different from that of the homo- 
geneous medium. Recently, Alavyoon and his co wor- 
kers investigated free convection in vertical porous 
enclosures due to both cooperative [ 141 and opposing 
[15, 161 fluxes of heat and solute at the boundaries. 

1787 



1788 M. MAMOU et al. 

A aspect ratio, H'/L' 
D mass diffusivity 
g gravitational acceleration 
H '  height of the enclosure 
j '  constant mass flux 
K permeability of the porous medium 
k thermal conductivity of fluid-saturated 

porous medium 
L' thickness of the enclosure 
Le Lewis number, ~/D 
N buoyancy ratio, flsAS'/flvAT' 
Nu Nusselt number, equation (11) 
q' constant heat flux 
RT thermal Darcy-Rayleigh number, 

9flKq'L'2/k~v 
S dimensionless concentration, 

( S ' -  S;)/AS" 
Sh Sherwood number, equation (12) 
S0 reference concentration at x'  = 0, 

y ' = O  
AS' characteristic concentration, j 'L ' /D 
AS dimensionless wall-to-wall 

concentration difference 
T dimensionless temperature, 

( T ' -  T'o)/AT' 
t dimensionless time, t'~/L'2/tr 
T0 reference temperature, x'  = 0, y '  = 0 
AT' characteristic temperature, q'L'/k 
AT dimensionless wall-to-wall 

temperature difference 

NOMENCLATURE 

u 

U 

X 

Y 

dimensionless velocity in x-direction, 
u'L'/~ 
dimensionless velocity in y-direction, 
v'L'/~ 
dimensionless coordinate axis, x'/L' 
dimensionless coordinate axis, y'/L'. 

Greek symbols 
thermal diffusivity k/(pc)f 

fls concentration expansion coefficient 
fix thermal expansion coefficient 
e' porosity of the porous medium 
e normalized porosity of the porous 

medium, e'/a 
v kinematic viscosity of fluid 
# dynamic viscosity of fluid 
p density of fluid 
(pC)f heat capacity of fluid 
(pC)p heat capacity of saturated porous 

medium 
tr heat capacity ratio, (pC)p/(pc)f 

dimensionless stream function, °d't~t. 

Superscript 
' dimensional variable. 

Subscripts 
max maximum value 
min minimum value 
0 reference state. 

Analytical solutions, valid for stratified flow in slender 
enclosures (A >> 1) were obtained by these authors. 
Scale analysis was applied to the two extreme cases 
of heat-driven and solute-driven natural convection. 
Numerical solutions of the full governing equations 
were found to be in excellent agreement with the ana- 
lytical solutions. Trevisan and Bejan [17] and Nield 
and Bejan [18] recently reviewed the literature on 
double-diffusive convection in porous media. 

In the present study, results from steady-state cal- 
culations of porous media subjected to uniform fluxes 
of heat and mass are presented. The aim of  this study 
is to determine the effect of RT, Le and N on Nu and 
Sh for both aiding (N > 0) and opposing (N < 0) 
flows. This investigation is limited to the case of a 
square cavity (A -- 1). For  this situation, the flow 
patterns are expected to be quite different from the 
parallel flow structure reported by Alavyoon et al. 
[14-16] for slender enclosures (A >> 1). Also, in the 
present study, for opposing flows, the existence of 
multiple steady states is demonstrated. The effect of 

the governing parameters on the domain of existence 
of these multiple solutions is discussed. 

MATHEMATICAL FORMULATION 

Figure 1 displays a schematic of the flow con- 
figuration. The rectangular porous enclosure is of 
width L'  and height H' ,  and the Cartesian coordinates 
(x', y'),  with the corresponding velocity components 
(u', v'), are indicated herein. The top and bottom 
boundaries of the enclosure are thermally insulated 
and impermeable. The vertical walls are subjected to 
uniform fluxes of heat and mass as 

aT '  x, (1)  q ' = k ~ T x '  =0.c 

j ,  8S'  (2) 
=D~Tx'x, 0,L, 

where both q' a n d j '  are assumed to be positive. 
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Fig. 1. Flow configuration and coordinate system. 

X'~ U' 

According to Fig. 1, the boundary conditions (1) 
and (2) mean cooling and mass efflux at x'  = 0 and 
heating combined with mass influx at x'  = L'. The 
symbols are defined in the nomenclature. 

The fluid saturated porous medium is assumed 
homogeneous and isotropic and inertial effects are 
neglected. The solution that saturates the porous 
matrix is modeled as a Boussinesq incompressible fluid 
whose density variation can be expressed as 

p = p0[1 - - f lx (T ' -  T 'o ) - f l s (S ' -S 'o ) l  (3) 

where fix and fls :are the thermal and concentration 
expansion coefficients. Subscript 0 stands for a ref- 
erence state. 

The equations governing the conservation of 
momentum, energy and constituent in the solution- 
saturated porous medium are (see for instance Lin 
[121) 

O 2 W i ? 2 W  [ O T O S ]  
c~x 2 + ]~yS- = -- RT ~x + N~x (4) 

OT OT OT c?2T  O2T 
Ot +u-g-~x +v Oy ~x 2 + (5) Oy 2 

OS OS OS 1 [02S O2S 1 

= Tee &J 
+u~.~+vff fy + (6) 

where the stream function ~P is defined by 

u = f f f y  v =  - -  0~-" (7)  

The above equations were nondimensionalized by 
introducing the following definitions : 

(x,y)  = (x ' ,y ' ) /L '  

(u, v) = (u', v')L'/o~ 

S = ( S ' - - S ; ) / A S "  

t = t'~/L'Z/a ] 

q2 = u?,t~ [ 
T = ( T ' -  T'o)/AT'J 

(8) 

where T; is the temperature at the origin of the coor- 
dinate system and AT' = q'L' /k  a characteristic tem- 
perature difference• S ;  and AS'  = j ' L ' /D  are the cor- 
responding values for the constituent. 

The dimensionless boundary conditions for the 
physical system considered in the present study are 

dT 0 S _  t 
x = 0 , 1  W = 0  0 x - 0 x  1 

A c~T 8S 
y =  ___~- ~ = 0  ~y a y - O  

(9) 

The non-dimensionalization process results in the 
appearance of several dimensionless parameters in the 
governing equations and boundary conditions which 
are defined as 

9flxKq'L '2 flsAS' 
RT -- kctv Le = ot/D N = 

A = H' /L '  e = e'fir 

(10) 

The first two dimensionless groups are the thermal 
Rayleigh number RT and the Lewis number Le, respec- 
tively• The Lewis number represents the ratio between 
the thermal and solutal diffusivities. The buoyancy 
ratio N is a measure of the relative significance of 
species and thermal diffusion in causing the density 
variation which drives the flow. For  the boundary 
conditions considered here a positive value of N 
results in augmenting convection (cooperative buoy- 
ancy forces), a negative value leads to opposing flows 
(the net buoyancy is weakened). Further, Nis  zero for 
non-species effect and infinite for solute-dominated 
effect• The group A is the aspect ratio that defines the 
slenderness of the enclosure• The last group e is the 
normalized porosity of the porous medium. 

The Nusselt and Sherwood numbers are used to 
describe the heat and mass transfer characteristics and 
thus are of interest in engineering applications. In 
the present study the average Nusselt and Sherwood 
numbers can be evaluated respectively by 

q' A 
Nu - - -  (11) 

kAT ' /L '  f+_~ii[T(1,y)_T(O,y)]dy 

and 

j '  A 
Sh = r+m2 (12) 

DAS' /L '  ! [S(1, y) - S(0, y)] dy 
. )  - A / 2  

where AT' and AS'  are the side-to-side averaged tem- 
perature and concentration differences, respectively• 
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NUMERICAL METHOD 

The conservation equations reported in the pre- 
vious section were solved numerically using the well- 
known Alternating Direction Implicit (ADI) scheme 
of Peaceman and Rachford (Roache [19]). The time- 
dependent governing equations (5) and (6) are 
marched in time until a steady solution is obtained. 
The temporal and spacial derivatives are approximated 
by first- and second-order discretizations, respectively. 
The stream function equation, equation (4), on the 
other hand, is solved by the Gauss-Seidel (S.O.R.) 
iterative scheme at each time step with a relaxation 
factor of 1.78. The following criteria were used to 
check convergence of all variables at all nodal points : 

~< F (13) 2, 2 r*::wl 
where ~ is any variable qJ, 7", S, and F is a prespecified 
constant, usually set to 10 -4  o r  less. A third-order 
forward and backward discretization is carried out to 
approximate the hydrodynamic, thermal and solutal 
boundary conditions imposed on the physical domain. 
Reliable numerical results are obtained by performing 
an energy balance at each time step over the physical 
domain. Also, for a steady flow condition the heat 
transfer through each plane x = constant was evalu- 
ated at each location 0 ~< x ~< 1 and compared with 
that of the input (x = 1) and the output (x = 0). A 
similar test was conducted to verify the overall mass 
balance. For most of the results reported here the 
energy and the mass balances were satisfied to within 
0.1%. 

For the present work, uniform mesh sizes have been 
used for both x- and y-directions. Based on several 
trial cases, a suitable grid field of (80 x 80) was selected 
for the present calculations. In the cases where the 
parameters N and Le were large, the grid fineness was 
improved up to 140 x 140. Typical values of the time 
steps range from 5 x 10 _5 to 10 -3. The CPU time 
required to reach steady state was approximately from 
3 to 14 CPU h on an IBM RISC 6000/RS 365 work- 
station. 

In the limiting case of non mass transfer effect in 
the flow, N = 0, the flow patterns and temperature 
fields predicted by the present numerical code, for 
natural convection in a cavity subjected to a hori- 
zontal temperature differential, were in excellent 
agreement with the solutions given by Shiralkar et al. 
[20]. More details of code validation are given in [21]. 
The solutions using the current code with double- 
diffusive natural convection have been directly com- 
pared with the numerical solutions of Alavyoon [14] 
for a square cavity. The agreement with this study was 
very satisfactory with less than 2% deviations in most 
cases. 

RESULTS AND DISCUSSION 

The foregoing analysis indicates that there are four 
parameters that could be varied in this study. These 

are Rr, N, Le and A. While computations can be 
carried out for any combination of the governing par- 
ameters, the objective here is to present a sample of 
results in order to illustrate the effects of these par- 
ameters on the cell formation processes and heat and 
mass transfer characteristics. As mentioned earlier, 
the study is limited to a cavity with an aspect ratio of 
unity, i.e. a square enclosure. In the actual compu- 
tations, e is set equal to unity, Le is varied from 1 to 
10 3 and RT from 1 to 165. The buoyancy ratio N is in 
the range - 2 0  to 20, covering the spectrum from 
mass-driven opposing flows (N<<- 1), to pure heat- 
driven flows (N = 0) to mass-driven aiding flows 
(N >> 1). 

Effect o f  buoyancy flows 
In Figs. 2-4 the effects of the buoyancy forces ratio 

are illustrated for RT = 100 and Le = 10. The results 
are presented in terms of streamlines (on the left), 
isotherms (at the center) and iso-concentration (on 
the right) contours for different values of N. The flow 
directions in the graphs can be easily identified accord- 
ing to the distributions of temperature and solute. The 
intervals of streamlines, isothermal and iso-con- 
centration lines are A~ = (~max--q~min)/16, where 
stands for W, T or S. Due to the thermal and solutal 
boundary conditions considered here, the right side 
wall has a higher temperature and higher con- 
centration than the left side wall. As a result, the 
direction of the thermal flow is counterclockwise, 
whereas the direction of the solutal flow depends upon 
the sign of the concentration expansion coefficient fls 
in equation (3). Thus the direction of the solutal flow 
is counterclockwise for fls (i.e. N) > 0 and clockwise 
for fls (i.e. N) < 0. 

Figures 2(a)-(c) exemplify typical features of aiding 
double-diffusive flow (N > 0). First, the heat-driven 
flow limit (N = 0) depicted in Fig. 2(a) is discussed. 
For this situation the ensuing flow is driven solely by 
the buoyancy effect associated with the temperature 
gradients. The resulting velocity and temperature 
fields are the ones reported already for the pure heat 
transfer problem (see for instance Trevisan and Bejan 
[9] and Vasseur et al. [22]). When the buoyancy ratio 
is increased above zero the flow near the hot right- 
hand wall is driven vertically upward, and meanwhile 
the low concentration at the left-hand wall causes the 
fluid near it to sink. Clearly, both thermal and solutal 
buoyancy effects are augmenting each other and thus 
they simultaneously accelerate the flow counter- 
clockwise. Figure 2(b) shows the results obtained 
upon increasing N from zero to unity for which the 
solutal and thermal buoyancies are equal. The result- 
ing pattern of streamlines, isotherms and iso-con- 
centrations are seen to be very similar to those of the 
heat-driven case shown in Fig. 2(a). Also it is observed 
from Figs. 2(a) and 2(b) that the thicknesses of the 
vertical boundary layers of velocity, temperature and 
concentration are approximately equal despite the 
relatively high Lewis number (Le = 10) considered 
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(a) 1 
(b) 

Fig. 2. Stream function, temperature and concentration lines for aiding and opposing flows at Rr = 100 
and Le = 10. (a) N = 0, Wmax = 2.186, ~I /min  = 0 ,  NU = 2.301, Sh = 11.583, ATm~ = 0.903, ASm~x = 0.267. 
(b) N = 1, ~max = 2.103, Wm~n = 0, NU = 2.327, Sh = 13.093, ATmax = 0.902, ASmax = 0.239. (C) N = 20, 
~Fma~= 1.329, Wm~,=0, NU=2.089, Sh=29.148,  ATmax=l.004, ASmax=0.174. (d) N = - I ,  
Wm~ = 2.2~9, W ~  = 0, NU = 2.231, Sh = 9.686, ATm~x = 0.907, AS~x = 0.312. (e) N = --20, q?m~ = 0, 

I'I'/mi n = -0.497, Nu = 1.153, Sh = 13.022, AT~x = 1.198, ASm~x -- 0.363. 

here. Similar results have been repor ted in the past  by 
Alavyoon  [14]. WZhen the buoyancy  rat io is increased 
to N = 20 the pa t te rn  of  s treamlines of  Fig. 2(c) indi- 
cates tha t  a large por t ion  of  the fluid in the center  of  
the cavity is now s tagnant  due to the blocking effect 
of  the vertical stratif ication of  the density field in this 
area and  the flow circulat ion is restricted to th in  

bounda ry  layers of  a lmost  cons tan t  thickness,  a long 
the vertical walls. The i so-concent ra t ion  lines indicate 
tha t  the concen t ra t ion  field too  has  bounda ry  layer 
character ,  its thickness being approximate ly  equal  to 
tha t  of  the hydrodynamic  b o u n d a r y  layer. F r o m  Figs. 
2(a)- (c)  it is clear tha t  solutal  concen t ra t ion  is gradu-  
ally enhanced  as N increases. 
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Illlllllll 
(b) li/  ii 
(e) t 
(d) 

(e) 

\ 

Fig. 3. Stream function, temperature and concentration lines for thermal dominated transitional flow for 
RT = 100 and Le = 10. (a) N = - 2, qJmax = 0.737, qJmin = -- 0.216, NU = 1.020, Sh = 1.839, ATmax = 1.022, 
ASmax = 0.942. (b) N = -- 1.85, Wmax = 1.042, qJmin = --0.221, NU = 1.035, Sh = 1.729, ATmax = 0.992, 
AS~ax = 0.930. (c) N = - - 1 . 8 5 ,  W~ax = 1.931, ~I/min = -0 .221 ,  Nu = 1.252, Sh = 2.161, ATmx = 0.990, 
ASma~ = 0.664. (d) N =  -1 .85 ,  Wmax = 2.250, ~I/min = -0 .174 ,  Nu = 1.683, Sh = 3.952, ATmx = 0.960, 
mama x = 0 . 4 4 0 .  (e) N = - - 1 . 5 ,  (Pmax = 2.291, ~I'/min = - - 0 , 0 0 2 ,  NU = 2.155, Sh = 8.266, ATmax = 0.915, 

A S ~  = 0.371. 

T h e  typica l  f ea tu re  o f  o p p o s i n g  d o u b l e - d i f f u s i o n  

f low ( N  < 0) is n o w  d i scussed .  F i g u r e  2(d)  s h o w s  the  

r e su l t s  o b t a i n e d  u p o n  d e c r e a s i n g  N f r o m  zero ,  Fig.  

2(a) ,  to  - 1. F o r  th i s  p a r t i c u l a r  va l ue  o f  t he  b u o y a n c y  
ra t io ,  it h a s  been  d e m o n s t r a t e d  in  the  p a s t  by  T r e v i s a n  

a n d  Be jan  [9] t h a t  the  f low d i s a p p e a r s  a l t o g e t h e r  in 

t he  l imi t ing  case  o f L e  = 1. T h i s  fo l lows  f r o m  the  fac t  

t ha t ,  for  th is  s i t ua t i on ,  t he  d i m e n s i o n l e s s  t e m p e r a t u r e  

a n d  c o n c e n t r a t i o n  fields a re  iden t ica l  s u c h  t h a t  t he  

sou rce  t e r m  in the  m o m e n t u m  e q u a t i o n  is ze ro  inde -  
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I ,., i 

(c) 

(d) I/i t///j 
Fig. 4. Stream function, temperature and concentration lines for solutal-dominated transitional flow for 
Rx = 100 and Le = 10. (a) N = - 2 ,  Wmax = 0, Wm~n = --0.131, NU = 1.009, Sh = 1.854, ATmax = 1.076, 
ASmax = 1.051. (b) N = - 1 . 8 5 ,  Wmax=0, Wm~,=--0.123, NU= 1.008, S h =  1.726, ATmax = 1.070, 
ASm~x=l.078. (c) N = - l . 5 ,  Wm~x=0, W~in=--0.109, NU=I.005, Sh=1.432, ATmx=l.054, 
ASmx = 1.157. (d) N = - 1.35, qJm~ = 0.010, ~I/min = -0.132, Nu = 1.003, Sh = 1.303, ATmax = 1.043, 

ASm~x = 1.174. 

pendent o f  the value of  the thermal Rayleigh number 
Rx. As a result, the steady state solution is a motionless 
fluid layer where the temperature and concentration 
profiles are linear. When the Lewis number  is different 
from unity a purely diffusive (motionless) solution is 
also possible. The existence of  such a solution was 
demonstrated numerically for RT = 100 and L e  = 10, 
using U/(x , y ,O)  =: 0, T ( x , y , O )  = S ( x , y , O )  = x as 
initial conditions. However,  upon using the rest state 
(W(x,y,0) = T ( x , y , O )  = S ( x , y , O )  = 0) as initial 
conditions, it was found that a convective state is also 
possible for this situation. Figure 2(d) shows that the 
resulting flow, driven by the thermal buoyancy force, 
proceeds counterclockwise. This is a consequence of. 
the fact that, in the core of  the cavity, the temperature 

gradient is larger than the concentrat ion one. Figure 
2(e) provides exemplary results for a large buoyancy 
ratio (N = -- 20). As expected, the flow is again domi- 
nated by the mass species buoyancy force. The direc- 
tion of  the fluid circulation has been completely 
reversed and the flow pattern consists in a primary 
cell moving clockwise along the cavity walls and two 
secondary cells contained within it, one in the top 
right corner and the other one in the bot tom left 
corner. 

Natural  convection flows arising when the tem- 
perature and solute gradients counteract  each other 
(N < 0) are in fact much more complex than the 
sequence of  events illustrated in Figs. 2(a), (d) and 
(e). In the vicinity of  N = - 1, there is a transitional 
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region, the extent of which depends upon Le and Rr, 
in which the thermal buoyancy is almost equal and 
opposite to the solutal buoyancy. In this region, where 
the direction of the flow circulation undergoes a rever- 
sal from a clockwise solutal dominated cell to a 
counterclockwise thermal dominated cell, multiple 
steady solutions are possible as it will be now 
discussed. 

When N is sufficiently large the whole flow is pri- 
marily driven by the solutal buoyancy, giving rise to a 
clockwise flow, as illustrated in Fig. 2(e) for N = - 20. 
Upon increasing N to - 2 the thermal buoyancy starts 
to exert some influence resulting in the complicated 
flow pattern disclosed in Fig. 3(a). In the boundary 
regions, close to the solid walls, the solutal buoyancy 
is strong enough to induce a primary cell circulating 
clockwise along the entire enclosure walls. In the core 
of the cavity the effects of thermal buoyancy set off 
giving rise to the existence of a multi layer flow struc- 
ture. From the values of Wmax and Wmin it is observed 
that the convection strength of this multiple-cell con- 
vection is much weaker than that of the single-cell 
convection. Basically, the flow consists of a thermally 
driven counterclockwise rotating cell, in the central 
part of the cavity, and two solutably driven clockwise 
circulations adjacent to the cavity walls. The thermal 
and solutal driven cells are counterrotating due to the 
opposing thermal and solutal buoyancies. As men- 
tioned earlier double-diffusive convection in a vertical 
porous enclosure subjected to opposing and hori- 
zontal gradients of heat and solute has been studied 
recently by Alavyoon et al. [16]. Analytical solutions 
for the velocity and temperature fields were obtained, 
in the limit of a thin porous layer (A >> 1), using a 
parallel flow approximation. Among other things, it 
was demonstrated by these authors that, in the tran- 
sitional region, for a given value of N, two different 
flow patterns are predicted by the analytical model. 
However, their numerical results could only confirm 
the existence of a single convective mode. This may 
be due to inappropriate choice of the initial conditions 
since it will be now demonstrated that, indeed, mul- 
tiple solutions are possible in the transitional region. 

For a given set of the governing parameters, if mul- 
tiple steady state solutions exist they have their own 
basin of attraction and only initial conditions within 
this basin will evolve to the desired steady state. Thus, 
initial conditions have to be chosen carefully to obtain 
the multiple solutions. For instance, Figs. 3(b)-(d) 
and 4(b) illustrate four different possible solutions for 
N = -- 1.85. The first solution, Fig. 3(b), obtained by 
using the flow configuration of Fig. 3(a) as initial 
conditions, is observed to be almost similar to that in 
Fig. 3 (a). For the second solution, a flow pattern akin 
to that of Fig. 3(c), obtained previously for the case 
N = - 1 . 8  (not presented here), was used as initial 
conditions. The results indicate that the thermal buoy- 
ancy exerts more important effects in Fig. 3(c) than 
in Fig. 3(b). Consequently, the thermally driven 
counterclockwise rotating cell in Fig. 3(c) grows in 

size and strength. Meanwhile, the cells induced by 
solutal buoyancy dwindle, since they do not own 
enough momentum to protrude and reach to the 
opposite walls, and are confined in the vicinity of the 
vertical walls. For the third solution, Fig. 3(d), the 
rest state ~(x, y, 0) = T(x ,  y, O) = S(x ,  y, 0) = 0 was 
used as initial conditions. For this situation, the ther- 
mally driven unicell core flow spans now completely 
the enclosure while the solutally driven secondary cells 
are confined in the corners of the cavity. The resulting 
heat and mass transfer is enhanced since the main 
cell is large enough to be directly in contact with 
the thermally and solutally active walls. It must be 
mentioned that the computing time necessary to 
obtain the steady flow pattern of Fig. 3(d) is extremely 
long (r = 45) due to very slowly decaying oscillations 
generated for this situation. Upon increasing N to 
- 1.5, Fig. 3(e), the concentration-governed cells have 
vanished. More exactly, two small solutal cells are still 
present in the upper right and lower left corners of 
the cavity but their magnitude is so small that their 
presence is not observable in the streamline patterns 
of Fig 3(e). At this stage, a complete reversal of the 
direction of the flow is achieved, indicating an over- 
turn of relative dominance between the temperature 
and solute fields on the convection pattern. For com- 
pleteness it must be mentioned that grid size has also 
an influence on the solution. For instance, upon doing 
the computations of Fig. 3(d) (starting from the rest 
state) it is possible to obtain two solutions : one with 
a 25 x 25 grid, for which the results is found to be 
qualitatively similar to that in Fig. 3 (c), and the other 
with a 85 x 85 grid which yields the same results as in 
Fig. 3(d). However, as discussed earlier, to obtain 
accurate results, all the numerical results presented 
here were obtained using at least a 80 x 80 grid size. 

As illustrated in Figs. 2 and 3, the effects of the 
buoyancy ratio N are found to be rather significant 
on the flow pattern. Distinct flow regimes have been 
illustrated upon varying the buoyancy ratio over a 
wide range. These include mass-dominated aiding 
flow, Fig. 2(c) ; mass-dominated opposing flow, Fig. 
2(e); thermal-dominated flow, Fig. 2(a) and tran- 
sitional flow, Figs. 3(a)-(e). In transitional flows mass 
species and thermal buoyancy forces prove to domi- 
nate separate circulations within the enclosure. The 
onset of transition is the buoyancy ratio at which a 
multi-cell flow structure is generated by the thermal 
buoyant forces. For the governing parameters con- 
sidered in Fig. 2, the onset of transition occurs at 
N = - 2  since the numerical results for N = -2 .05  
(not presented here) indicate the existence of a uni- 
cellular motion rotating in the clockwise direction 
driven by solutal buoyancy. The end of the transition 
(N "-~ - 1.5) occurs when the buoyancy ratio is large 
enough to overcome the solutal forces and gives rise 
to a unicell motion driven by thermal buoyancy, Fig. 
3(e). 

From the results presented in Fig. 3 it is clear that 
the reversal of the flow, from a clockwise solutal- 
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dominated circulation to a counterclockwise thermal- 
dominated circulation is characterized by a multi-cell 
double-diffusive pattern. At the onset of transition, 
N = - 2  in Fig. 3(a), both temperature and solute 
effects exert some influence, giving rise to separate 
circulations in opposite directions. This multiple-cell 
pattern is maintained up to a point, N "-" - 1.5 in Fig. 
3(e), where the solutally driven cells disappears and 
the whole flow is primarily driven by the thermal 
buoyancy. It will be now demonstrated that the solu- 
tion in the transition region described above is not 
unique. As discus,;ed above the transitional region 
starts approximately at N = - 2 ,  for which the 
intrusion of a the~maal-dominated vortex yields the 
multi-cellular flow regime depicted in Fig. 3(a). The 
same case was run again but using this time, as initial 
conditions, the steady state results for a strong uni- 
cellular clockwise motion resulting from the solution 
of a lower N case,, namely N = - 10. The resulting 
stable steady state is depicted in Fig. 4(a) which shows 
the existence of a single clockwise flow, clearly domi- 
nated by the mass species buoyancy force. This flow 
configuration is maintained when N is increased to 
- 1.85, Fig. 4(b), yielding a fourth possible flow pat- 
tern (see also Figs. 3(b)-(d)) for this particular value 
of the buoyancy ratio. It must be mentioned that the 
convective flow of l~'ig. 4(b) was obtained by using the 
steady state results of N = - 2 ,  Fig. 4(a), as initial 
conditions. Following this procedure, as the value of 
N is increased to - 1.5, Fig. 4(c) indicates the existence 
of a major clockwise vortex extending from the right 
top corner to the left bottom corner. In the remaining 
two corners the presence of small eddies is noted. 
Upon increasing N to -1 .35 ,  a complicated multi- 
cellular flow structure, Fig. 4(d), is produced. Two 
counterclockwise rotating thermal-driven cells, 
squeezed by three clockwise rotating solutal-driven 
cells, are observed to occur at the top and the bottom 
of the enclosure respectively. This counterrotating 
flow, induced by the opposing buoyancy forces, is 
prone to instability. Thus, the numerical results (not 
presented here) show that upon increasing slightly N 
from - 1.35 to - 1.34 the flow pattern of Fig. 4(d) 
collapses, giving rise to a single counterclockwise ro- 
tating thermally-induced circulation similar to that of 
Fig. 2(b). This sudden transition, from a clockwise 
solutal-dominated vortex to a counterclockwise ther- 
mal-dominated cir~zulation, is quite different from the 
multi cellular flow transition shown in Fig. 3. 

Heat and mass transfer 
The effect of buoyancy ratio N on the average Nus- 

selt and Sherwood numbers is depicted in Fig. 5 for 
RT= 100, L e =  10 and -20~<N~<20 .  For  con- 
venience, the scale for - 3  ~< N ~ < - 1  has been 
enlarged in Fig. 5(a). The results for opposing flows 
(N < 0) indicate that at N = - 2 0  the average Sher- 
wood number is relatively high. For  this situation the 
existence of a sharp solute boundary layer is observ- 
able from Fig. 2(e). On the other hand the average 
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Fig. 5. Nusselt and Sherwood numbers vs the buoyancy ratio 
N for RT = 100 and Le = 10. 

Nusselt number is seen to be of order unity. This is 
due to the large Lewis number considered here 
(Le = 10), for which the side-to-side heat transfer pro- 
cess is almost ruled by pure diffusion solely. Upon 
increasing N, it is observed from Fig. 5(a) that the 
solutal-dominated opposing flow can be maintained 
up to N = - 1,35. For  this regime one can note that 
Nu remains approximately close to unity while Sh 
decreases sharply with the magnitude of INI. This is 
due to the fact that, upon increasing N, the flow driven 
by the buoyancy effect due to solutal variations is 
more and more weakened by the opposing thermal 
buoyancy force. For  the solutal-dominated aiding 
flow (N > 0), Fig. 5(a) indicates that Sh increases 
significantly when N is raised from 0 to 20, i.e. as the 
magnitude of the solutal buoyancy forces is increased. 
On the other hand, as for the case of opposing flows, 
the average Nusselt number is observed to remain 
approximately constant, especially when N is made 
very large. Also, a bird's-eye-view of the numerical 
results in Fig. 5(a) indicates that both Sh and Nu are 
less in the opposing flow area (N < 0) than for the 
corresponding N in the aiding flow range (N > 0). 

The effects of the occurrence of multiple solutions, 
for the range - 2  ~< N ~< - 1.35, on Nu and Sh will be 
now discussed. To this end a zoom of the region in 
the vicinity of N = -1 .85  is presented in Fig. 5(b). It 
is seen that, depending on the value of N, the number 



1796 M. MAMOU et al. 

of possible solutions varies from 2 to 4. Thus, in 
addition to the sotutal-dominated opposing flow 
(N ~< -1.35) described above a thermal-dominated 
flow, exemplified by the flow pattern of Fig. 3(d), 
occurs for N >I -1.85.  As discussed earlier, for a 
buoyancy ratio N ~> - 2  a third possible solution, 
similar to that illustrated in Fig. 3(a), can be main- 
tained up to N --~ -- 1.85. For this situation, it is found 
that Nu and Sh are approximately equal to the results 
obtained for the solutal-dominated opposing flow 
solution. Finally, a fourth solution, akin to that 
depicted in Fig. 3(c), is predicted for -1 .9  ~< N ~< 
--1.8. 

The effects of Lewis number Le and Rayleigh num- 
ber RT on the average Nusselt and Sherwood numbers 
for opposing flows in the transitional region are illus- 
trated in Figs. 6(a) and (b), respectively for N = - 1.8. 
The data in Fig. 6(a), obtained for RT = 10, span the 
Lewis number range 1-103 . The plot shows that at 
Lewis numbers smaller than approximately 11.6, only 
one steady state solution exists. For these low Lewis 
numbers the flow field, consisting of a counter- 
clockwise circulation, is controlled essentially by the 
concentration field. A reversal of the convection direc- 
tion of the primary cell is observed when Le is 
increased above approximately 145. For these large 
Lewis numbers the velocity field is now primarily 
controlled by the thermal buoyancy. For 11.6 ~< 
Le <~ 145, Fig. 6(a) indicates the existence of two 
different possible solutions. Depending upon the 
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initial conditions it was found numerically that both 
solutal dominated and thermal dominated flows are 
possible. Figures 7(a) and (b) show the flow, tem- 
perature and concentration structures at Le = 100. 
The concentration-dominated flow of Fig. 7(a) is 
qualitatively akin to the results discussed previously 
for RT = 100, Fig. 4(b). However, due to the low 
Rayleigh number considered here (RT = 10) the multi- 
cellular structure, reported in Fig. 3(b) for thermal 
dominated flows, is not observed here. The solute field 
of Fig. 7(b) is seen to be highly uniform in the core of 
the cavity, giving rise to a single cell largely controlled 
by the temperature field. In Fig. 6(b) the results 
obtained for Le = 10 exemplify the influence of the 
Rayleigh number on the possible existence of multiple 
solutions in the transitional regime. When RT is small 
enough the velocity field is controlled by con- 
centration and the resulting flow patterns, similar to 
that of Fig. 2(a), are unique. Upon increasing Rx, it 
was found that this flow regime could be maintained 
up to approximately 165 for which the layered flow 
structure depicted in Fig. 7(c) is obtained. The solu- 
tally driven flow is very strong around the periphery 
of the vertical side walls. Furthermore, unlike the pre- 
vious case, a three-layer structure is visible in the 
interior core. These three layer-structured clockwise 
circulations, are driven by the solutal buoyancy, the 
thermal field in the core of the cavity being nearly 
conductive. For RT higher than 165 it is found that 
the solution evolves towards an oscillating state of 
convection (the Hopf's bifurcation). This situation 
has been recently studied, among others, by Alavyoon 
et al. [16] and will not be discussed here. As expected, 
Fig. 6(b) reveals that, in the range 12 ~< RT ~< 100, a 
thermally induced counterclockwise flow pattern simi- 
lar to that of Fig. 3(d) is also possible. Furthermore, 
for 55 ~< Rx ~< 140 a multi cellular flow, exemplified 
by Fig. 3(c), can be maintained only for the range of 
the Rayleigh number mentioned above. For RT < 55 
the numerical solutions were found to evolve to 
the solutally-dominated clockwise circulation. For 
Rx > 140 the flow was found to become oscillating. 

S U M M A R Y  

A numerical study is conducted to investigate the 
patterns and characteristics associated with the 
double-diffusive convection is a square porous 
enclosure with uniform heat and mass fluxes along 
the vertical sides. Important controlling parameters 
including the thermal Rayleigh number, Lewis num- 
ber and buoyancy ratio are varied and new insights 
into the solutions of both augmenting and counter- 
acting cases gained. The major results obtained in the 
present investigation can be summarized as follows. 

(1) The existence of multiple patterns of convection 
in the transition regime, where both thermal and con- 
centration buoyancy forces are approximately equal 
and opposite, has been demonstrated numerically. 
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Fig. 7. Stream function, temperature and concentration lines for N = -1.8.  (a) Rx = 10, Le = 100, 
tI%ax = 0, W~, = -0.012, Nu = 1.000, Sh = 1.667, AT,~, x = 1.007, ASm~x = 1.097. (b) RT = 10, Le = 100, 
Wm~x = 0.639, Wmm = 0, NU = 1.110, Sh = 13.503, ATmax = 1.146, ASmax = 0.233, (c) Rx = 165, Le = 10, 

'~max = 0, ~m~, = --0.130, Nu = 1.007, Sh = 1.717, ATm~ = 1.070, ASm~ = 1.082. 

U p o n  increasing N, the reversal of  the flow direct ion 
f rom the clockwise soluta l ly-dominated circulat ion to 
the counterclockwise soluta l ly-dominated circulation,  
depends strongly on the initial condit ions.  Two 
different modes  of  t rans i t ion have been made  con- 
spicious. In the first mode,  an  over turn  of  relative 
dominance  between the tempera ture  and  solute fields 
on  the convect ion pa t te rn  is reached for a given value 
of  N at  which an  ab rup t  reversal of  the convect ion 
direct ion occurs. Ir~L the second mode,  upon  increasing 
N, the tempera ture  effects become progressively com- 
parable  and  eventually larger than  the solute effects. 
Fo r  this s i tuat ion up  to four  different convective pat-  
terns have been observed for a given value of  the 
buoyancy  ratio. Comple te  flow reversal occurs at  a 
given value of  N for which the the rmal -domina ted  
counterclockwise vortex spans  completely the en- 
closure. 

(2) In the t rans i t ional  regime, for a given value of  
N, the effects of  b o t h  Le and Rx on the flow pat te rns  
have been investigated. It  is demons t ra ted  that ,  when  
RT is ma in ta ined  constant ,  the flow is solutal ly-driven 
when  Le is small  and  thermal ly-dr iven when  Le is 
sufficiently high. Fo r  intermediate  values of  Le, bo th  
solutions are possible. On the o ther  hand ,  for a given 
values of  Le, the flow is solutal ly-driven for small 

values of  RT. For  intermediate  values of  R~ the exist- 
ence of  different possible solutions is demonst ra ted .  
For  larger values of  RT significant f luctuat ions in the 
velocity, tempera ture  and  concen t ra t ion  are observed. 

(3) W h e n  IN[ is sufficiently small  the flow proper-  
ties are governed primari ly by the the rmal  buoyancy.  
W h e n  [N[ is large enough the gross flow characterist ics 
are similar to those of  pure  solutal  convection.  The 
thermal  field is quali tat ively akin to the pseudo-con-  
duct ion  regime and  the overall  velocity field in the 
bulk  of  the cavity is fairly quiescent. 
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